Extensions 1→N→G→Q→1 with N=D4 and Q=S32

Direct product G=N×Q with N=D4 and Q=S32
dρLabelID
S32×D4248+S3^2xD4288,958

Semidirect products G=N:Q with N=D4 and Q=S32
extensionφ:Q→Out NdρLabelID
D41S32 = S3×D4⋊S3φ: S32/C3×S3C2 ⊆ Out D4488+D4:1S3^2288,572
D42S32 = Dic63D6φ: S32/C3×S3C2 ⊆ Out D4488+D4:2S3^2288,573
D43S32 = D12⋊D6φ: S32/C3⋊S3C2 ⊆ Out D4248+D4:3S3^2288,574
D44S32 = D12.D6φ: S32/C3⋊S3C2 ⊆ Out D4488-D4:4S3^2288,575
D45S32 = S3×D42S3φ: trivial image488-D4:5S3^2288,959
D46S32 = Dic612D6φ: trivial image248+D4:6S3^2288,960
D47S32 = D1212D6φ: trivial image488-D4:7S3^2288,961
D48S32 = D1213D6φ: trivial image248+D4:8S3^2288,962

Non-split extensions G=N.Q with N=D4 and Q=S32
extensionφ:Q→Out NdρLabelID
D4.1S32 = S3×D4.S3φ: S32/C3×S3C2 ⊆ Out D4488-D4.1S3^2288,576
D4.2S32 = Dic6.19D6φ: S32/C3×S3C2 ⊆ Out D4488-D4.2S3^2288,577
D4.3S32 = D129D6φ: S32/C3×S3C2 ⊆ Out D4488-D4.3S3^2288,580
D4.4S32 = D12.22D6φ: S32/C3×S3C2 ⊆ Out D4488-D4.4S3^2288,581
D4.5S32 = D12.7D6φ: S32/C3×S3C2 ⊆ Out D4488+D4.5S3^2288,582
D4.6S32 = Dic6.20D6φ: S32/C3×S3C2 ⊆ Out D4488+D4.6S3^2288,583
D4.7S32 = Dic6⋊D6φ: S32/C3⋊S3C2 ⊆ Out D4248+D4.7S3^2288,578
D4.8S32 = Dic6.D6φ: S32/C3⋊S3C2 ⊆ Out D4488-D4.8S3^2288,579
D4.9S32 = D12.8D6φ: S32/C3⋊S3C2 ⊆ Out D4488-D4.9S3^2288,584
D4.10S32 = D125D6φ: S32/C3⋊S3C2 ⊆ Out D4248+D4.10S3^2288,585
D4.11S32 = Dic6.24D6φ: trivial image488-D4.11S3^2288,957

׿
×
𝔽